Реферат

Дипломная работа на тему: "Исследования методов распознавания объектов на снимках ДЗЗ". Объем работы - 85 е., количество рисунков - 40, таблиц - 1, формул - 62, библиографических наименований в списке литературы - 22.

Цель работы

Целью данной работы является детальное изучение различных методов распознавание объектов (РО) на снимках Дистанционного зондирования Земли (ДЗЗ), выявление их преимуществ, недостатков, оценка возможности их применения в различных ситуациях. Перед исследованием стояли задачи оценки точности и вероятности ошибки методов РО.

Актуальность работы

ДЗЗ активно используется для решения задач анализа изменений поверхности Земли со временем, формы наземных, надводных объектов или их местоположения, а также пополнения и уточнения картографических баз.

Процесс РО двух снимков одной и той же территории, но с различными характеристиками, сделанных в разное время и при различных погодных условиях, может существенно различаться как по сложности, так и по методам, которые необходимо применить для осуществления распознавания. Поэтому, для того, чтобы решать задачу РО, необходимо знать методы, алгоритмы распознавания, а также эффективность их применения в тех или иных условиях.

Результаты работы

В процессе работы были проанализированы факторы, влияющие на результат РО на снимках ДЗЗ, в частности факторы, влияющие на точность ДЗЗ, а также основные группы признаков, используемые при распознавание объектов. Было выявлено, что наиболее эффективными являются вероятностные и геометрические признаки.

Выделены две группы задач распознавания: классификация; поиск и локализация специфических областей. При рассмотрении методов РО на снимках ДЗЗ в контексте первой группы задач основной акцент сделан на вероятностном подходе. Используемую в класс^икации дискриминантную функцию предложено аппроксимировать к гауссовой нормальной функции или к их сумме. Рассмотрены вопросы определения ошибки классификации. Также рассмотрены кластеризационные методы.

В качестве альтернативы вероятностному подходу рассмотрен итерационный подход к обучению с использованием многослойных нейронных сетей без обратной связи. Были рассмотрены особенности распознавания площадных объектов и предложен алгоритм для их локализации.

Научная новизна

Новизной работы является попытка объединения положительных сторон методов цифровой обработки изображений (ЦОИ), мультиспектрального подхода, основанного на теории вероятности и математической статистике, а также учета развития теории распознавания образов и систем поддержки и принятия решений (СПРП). Также впервые предложен алгоритм локализации однородных площадных объектов.

Результаты использования полученных результатов

Результаты данной работы использовались при разработке модуля РО «Автоматизированного рабочего места (АРМ) оператора обработки информации от датчиков ДЗЗ» в «Техническом проекте Системы и Центра обработки информации», выполненого «ИПРИ» НАЛ Украины по международному контракту с КНР. В частности, был использован предложенный в данной работе алгоритм локализации площадных объектов. Анализ методов РО с обучением позволил сделать выводы по их возможной реализации в будущем.

Предложения о продолжении исследования

Теоретические наработки работы по методам классификации нуждаются в практической реализации. Имеет смысл дорабатывать и предложенный алгоритм распознавания площадных объектов в контексте расширения списка возможных критериев принадлежности элемента снимка к объекту.

Перечень ключевых слов

РАСПОЗНАВАНИЕ ОБРАЗОВ, ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ, СНИМОК, ДЕШИФРОВОЧНЫЕ ПРИЗНАКИ, МЕТОДЫ КЛАССИФИКАЦИИ, ОБУЧЕНИЕ, КЛАСТЕРИЗАЦИЯ, ВЕРОЯТНОСТНЫЙ ПОДХОД, НЕЙРОННЫЕ СЕТИ, ИЗОБРАЖЕНИЕ, ПЛОЩАДНОЙ ОБЪЕКТ, АЛГОРИТМ ЛОКАЛИЗАЦИИ.